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ABSTRACT

Datacubes form an accepted cornerstone for analysis- and visualization-ready spatio-temporal data offerings.
The increase in user friendliness is achieved by abstracting away from the zillions of files in provider-specific
organization. Datacube query languages additionally establish actionable datacubes, enabling users to ask "any
query, any time" with zero coding. However, typically datacube deployments are aiming at large scale, data
center environments accommodating Big Data and massive parallel processing capabilities for achieving decent
performance. In this contribution, we conversely report about a downscaling experiment. In the ORBIiDANSE
project a datacube engine, rasdaman, has been ported to a cubesat, ESA OPS-SAT, and is operational in space.
Effectively, the satellite thereby becomes a datacube service offering the standards-based query capabilities of
the OGC Web Coverage Processing (WCPS) geo datacube analytics language. We believe this will pave the way
for on-board ad-hoc processing and filtering on Big EO Data, thereby unleashing them to a larger audience and
in substantially shorter time.
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1 INTRODUCTION techniques [7][14].
Further, data providers still tend to think in
Never before has it been so inexpensive to obtain large ~ “archives” akin to Web file systems, which offer at
amounts of Earth observation satellite imagery, —most download of individual scenes as acquired by the
helping to monitor and understand our planet and its  satellite sensors. Such data organization tends to
evolution in time. At the same time this brings many  perform badly in timeseries processing and leaves it to
challenges [19]. the end user to deal with the data filtering, alignment,
Increases in spatial sensor resolution result in more ~ and indexing tasks required for any serious data
detailed but also larger data acquisitions, and data  mining and analytics.
download during ground station overpasses becomes a Finally, data download, processing, and ingestion
bottleneck [11] requiring complex scheduling into archives takes significant time, so it is rarely
viable for real-time applications.

- . ) These and further impediments call for shifting
This paper is accepted at the International Workshop on Very - board th tellit that not dat
Large Internet of Things (VLIoT 2022) in conjunction with the processing on boar € saleflites so that not raw dafa,

2022 VLDB Conference in Sydney, Australia. The proceedings | PUt answers to user ques_tions can be provide_d in near-
of VLIoT@VLDB 2022 are published in the Open Journal of | real time. With increasingly more computing power
Internet of Things (OJIOT) as special issue.
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and more standardized software architectures available
on-board [10][16] this vision appears feasible today.

This begs the question what high-level access and
“answering user questions” could mean. Our under-
standing is driven by the notion of Analysis-Ready
Data (ARD) [19] on the one hand and the concept of
coverages as per the OGC and ISO standards
[6][17][4] on the other hand. In combining both
concepts the OGC Coverage Implementation Schema
(CIS) [6] allows representing, among others, multi-
dimensional spatio-temporal datacubes. The standard
defines requirements such data need to fulfill to be
ready for analysis — be homogeneous in that one single
coordinate reference system governs the whole extent
of it, for example. On this data model both a low-level
access service called Web Coverage Service (WCS)
[1] is defined, and a high-level datacube analytics
language named OGC Web Coverage Processing
Service (WCPS) standard [4][3], which is paralleled
by the 1SO SQL/MDA standard [13], an extension of
standard SQL for management and querying of
multidimensional arrays, just without space/time
semantics to be domain agnostic. Both WCPS and
SQL/MDA are suitable candidates for the high-level
interfaces a satellite should provide to enable direct
on-demand access and analytics.

Besides the elevated quality of service there is also
a gain in performance suggested by the observation
that the more concretely user requests can be directly
answered on the server, the less data need to be
delivered to the client, thereby minimizing download
costs. One demonstration of this is available in the
Earth Datacube Playground “race” between an Apache
Web server and a rasdaman database service [17].

Based on these considerations we have proposed
with the ORBIDANSe project, back in 2016, to
conduct a proof of concept by equipping forthcoming
ESA OPS-SAT [10] with the rasdaman datacube
engine. The main goal was to allow WCPS and
SQL/MDA queries to be sent to the satellite, receiving
back the query evaluation results.

In this paper we report about the first experiments
now that the satellite has become operational. The
main contributions are (i) porting an existing,
datacenter-proven datacube engine to a cubesat, (ii)
optimizing this orbital data service by minimizing its
resource footprint so as to run in the limited
environment, and (iii) demonstrating feasibility in
space.

The remainder of this paper is organized as
follows. In Section 2 we inspect related work in the
field. In Section 3 we present the on-board experiment
of the datacube engine on the cubesat, followed by a
discussion of the results in Section 4. Finally, Section
5 concludes the plot.

45

2 RELATED WORK

NASA SpaceCube is a hardware platform optimized
for efficient on-board processing of any code [16]. As
such, it supports neither datacubes nor datacube
queries. In fact, rasdaman potentially could be ported
to SpaceCube.

ESA Phi-Sat-1 is a recently launched cubesat
where emphasis is put on bringing standard software
architectures to space. Phi-Sat-1 concentrates on Al
processing on board with a fixed functionality (such as
cloud detection) determined by the pre-flight training
[12], as opposed to the ORBIDANSe flexibility of
“any question, any time”. A combination of both
approaches would be an interesting future project.

On the more theoretical side, the work on iSat
explores how satellites can be transformed from fixed
relay nodes into dynamic edge computing nodes
capable of loading apps on board, essentially forming
an loT cloud in space, and interfacing with standard
cloud services on the ground [20]. This idea is very
similar in spirit to OPS-SAT, but goes a step further
by considering satellite constellations. Simulated
experiments on the iSat model demonstrated signific-
ant improvements to time and power consumption
when executing tasks on board.

In summary, we are not aware of any activity to
perform on-board processing (i) using a datacube
approach and (ii) providing flexible query access from
ground.

3 RASDAMAN @ OPS-SAT

In this section we give an overview of the OPS-SAT
cubesat and the rasdaman Array DBMS aka datacube
engine. After that, we report on our challenges en-
countered while porting rasdaman to the OPS-SAT
environment.

3.1 The OPS-SAT Cubesat

OPS-SAT is a 3-unit cubesat of size 10 x 10 x 30 cm
with deployable solar panels on each side [10] (Figure
1). The nano-satellite has been launched by ESA as an
experimental platform for novel hardware and
software concepts. It offers a range of resources on-
board, including standard CPU / storage / memory,
field-programmable gate arrays (FPGAS), camera,
GPS, and an attitude determination and control system
(ADCS). The Satellite Experimenter Processing Plat-
form (SEPP) features a 925 MHz dual-core ARM Cor-
tex A9 Hard Processor System (HPS), 16 GB of flash
storage, 1 GB of DDR3 CPU RAM with ECC, and an
integrated Cyclone 5 FPGA with 1 GB of dedicated
DDR3 FPGA RAM, creating a high-bandwidth system
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for embedded applications with parallel processing.
The images acquired with the on-board camera are
2048x1944 pixels with standard visible RGB
channels; an example is shown on Figure 2.

OPS-SAT supports deployment of external soft-
ware on-board in the form of standardized application
packages, which is a novel development in the satellite
world. The NanoSat Mission Operations Framework
software development kit (NMF SDK) helps experi-
menters in on-board software development by provid-
ing an API for utilizing the satellite’s resources, such
as camera, GPS, ADCS, etc. This system runs an em-
bedded Linux operating system with support for exec-
uting Java 1.8 applications, native C/C++ executables
compiled for the armhf architecture, Python 2.7
scripts, and a standard Posix shell with the busybox
utilities.

A service called Space Shell is also provided to
experimenters on ground for submitting Linux
commands as unprivileged user in the on-board shell
in real-time. Any output generated during command
execution will be downlinked via S-Band. Further, an
interactive ground application is available for the
experimenter.

For our experiment setup, we developed a Java
application that allows executing several actions
remotely via the NMF SDK, including: start and stop
rasdaman; take a picture and insert into rasdaman
either as a 2D array or updating a 3D time-series
datacube; and adjust the camera exposure to an
automatically determined value.

3.2 The rasdaman Datacube Engine

The rasdaman (“raster data manager”) datacube
engine has pioneered Array Database Management
Systems (DBMS) as a new class of NoSQL DBMSs
[1][5][2]. Like a conventional DBMS rasdaman offers
a query language, rasql, with specific operators on
multi-dimensional datacubes, rather than conventional
tables. Among others, rasdaman supports spatio-
temporal queries in a genuinely multi-dimensional
way, with all functionality available on every axis,
including time.

In 2019, this high-level, declarative query lang-
uage has been adopted as a further component of the
ISO SQL standard under the name SQL / MDA
(Multi-Dimensional Arrays) [13].

Architecturally, rasdaman resembles a fully-
fledged DBMS with its array engine crafted as a full-
stack implementation in fast C++. The multi-parallel
worker processes operate on arbitrarily tiled arrays;
the administrator can override the default tiling by
specifying individual size and shape for storage; this
resembles a tuning factor which, however, remains
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completely invisible to the query writer. Further
tuning parameters include compression, indexing,
cache sizing, etc. A number of highly effective
optimizations are applied to each incoming query
individually, such as query rewriting into a more
efficient form, cost-based optimization, intelligent
cache utilization, compilation into machine code,
multi-core parallelization, distributed processing, etc.

On top of this domain-agnostic engine a geo
semantics layer adds handling of space and time
coordinates on regular and irregular grids. A rasdaman
server offers its geo datacube functionality via the
OGC datacube standards, in particular the OGC Web
Coverage Processing Service (WCPS) datacube
analytics language. Internally, WCPS queries are
translated into SQL/MDA and executed in the multi-
parallel, distributed evaluation engine.

Figure 2: OPS-SAT camera capturing frosty fjord
(source: [8])
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The rasdaman technology is in operational,
industrial use since many years forming, among
others, the backbone of the first location-transparent
datacube federation, EarthServer [2][8].

3.3 Challenges Encountered

Deploying rasdaman on OPS-SAT raised several
challenges: a new architecture (ARM Cortex A9 as
opposed to Intel-based architecture); constrained
environment in terms of computing resources on board
(only 1 GB of RAM, less than 16 GB disk space); a
slow uplink bandwidth which limited the size of
packages that could be uploaded on board in
reasonable time; and more. Below we discuss some of
the core issues encountered.

Compiling rasdaman for the precise CPU archi-
tecture of the satellite proved difficult without access
to the actual board. Efforts to do it on a BeagleBone
Black board were not successful due to compatibility
issues and instabilities. In the end the only solution
that worked was cross-compiling in a QEMU virtual
machine with the same target processor architecture
and 2 GB RAM.

To accommodate for the minimal environment it
was necessary to strip away many features that
otherwise are a fairly essential part of rasdaman: the
OGC Web services frontend that deploys on top of
rasdaman as a Java Web Application, support for
importing and exporting data in many formats via the
GDAL library, as well as special support for NetCDF
and GRIB data format, etc. In the end the result was a
10 MB package containing only the core rasdaman
engine (written in C++), with support for import /
export of data in PNG, JPEG, and BMP formats.

In orbit the OPS-SAT GPS was malfunctioning so
it was not possible to demonstrate geo-referencing;
however, we consider this not a relevant drawback as
the main point of the experiment is the on-board
processing of dynamic queries on images acquired; for
map production on a commercial-grade satellite GPS
would be available with no doubt.

Further, the OPS-SAT downlink did not support
TCP/IP initially; surprisingly it became available
experimentally about a week before our experiment
was scheduled for running on board. Therefore, the
workaround implemented earlier had to be used. In
future, communication is expected to be more
straightforward with some standard TCP/IP stack.

Altogether, a large part of the issues encountered
were due to (i) the highly experimental setup and (ii) a
general tendency in the on-board IT infrastructure to
be rather specific and by far not compliant with IT
common industry standards.
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4 EVALUATION

4.1 Experiments

Our experiments aimed at demonstrating the value of
running rasdaman on a satellite in orbit. The main
hypotheses are:

(1) Edge computing is more efficient - we ship com-
puting queries to the data (very low bandwidth
needed), instead of data to the computing (high
bandwidth needs and expensive for satellites).

(2) Edge nodes, such as satellites, are power and re-
source constrained, in contrast to large datacenters.
Rasdaman is a database engine for multidimen-
sional array data, such as satellite images, written
in C++ and heavily optimized for minimal re-
source usage. Therefore, a datacube engine like
rasdaman fits well for deployment on a tiny com-
puter aboard a satellite.

(3) As a database engine, rasdaman allows continu-
ously acquiring and storing large amounts of im-
agery. This enables much more autonomous opera-
tion, as well as flexibility for running ad-hoc que-
ries as needed during the infrequent and short win-
dows for communication with a ground station. Ef-
fectively, a satellite becomes a dynamic and agile
edge computing node, in contrast to the traditional
pre-programmed mode of operation.

(4) At the same time, rasdaman is capable of scaling to
make efficient use of powerful computing re-
sources on cloud or supercomputer infrastructure.
Through federation it is possible to connect ser-
vices running on satellites with services running on
ground, for a seamless experience when perform-
ing data science tasks.

To illustrate (1) we devised several queries on the
imagery inserted into rasdaman. As is typical, they
reduce the original size, e.g. aggregating results to one
or (with a timeseries) a list of scalars; scaling down
for quick visual inspection on ground; spatial or
channel subsetting; threshold or classification queries
resulting in binary images; encoding to lossy JPEG.

The queries that demonstrate (2) perform heavier
image processing and analysis, such as edge detection,
histogram calculation, timeseries aggregation. The
goal is to show that rasdaman is capable of answering
queries that take longer, or a lot of data to evaluate.

Query (3) involves continuously acquiring and
storing images in a 2D mosaic placed in a 3D time-
series datacube. This should work in a rolling archive
fashion to accommodate for the limited disk space so
that older data is removed from the datacube when the
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disk is filled up. Space usage would be further reduced
through support for filtering image acquisition only
over areas of interest given as polygon boundaries.

Finally, federating rasdaman nodes (point 4)
requires TCP/IP support for communication between
the federated machines. OPS-SAT did not have
TCP/IP which prevented (4) from being evaluated. An
experimental TCP/IP capability got added to OPS-
SAT late in the project, about a week before our
experiment was scheduled for running on board.
Therefore, the proprietary stack had to be kept.

The experiment steps undertaken are presented
below. The first five steps were implemented as
actions in our NMF app, executed from ground
through the Consumer Test Tool (CTT):

1. A "Start rasdaman” command executes the
startup routines of the rasdaman engine.

2. A daily collection (table in SQL-speak) is creat-
ed named Images_YYYYMMDD holding the set
of 2D images acquired today. This is done by ex-
ecuting the rasql query
create collection Images_20211027 RGBSet

3. Similar to the previous action, an "Initialize
timeseries™ action creates a collection for build-
ing a 3D timeseries datacube of RGB pixels, and
initializes it with a 3D array of one dummy point
(updated later on in step 5):
create collection C RGBSet3
insert into ImageTimeseries
values marray min [0:0,0:0,0:0]

values {0c,0c,0c}

4. Take a PNG picture with the camera and insert
into the daily collection with a query as below:
insert into Images 20211027
values decode( $1, "png")
where the $1 variable is a placeholder for the
image acquired, such as
snaps/20211022_073847_myPicture.png.  The
full command invocation (which we generally
suppress in this paper for brevity) is:
rasql -q "insert into Images_20211027

values decode( $1, \"png\"”)”
-f snaps/20211022_073847_myPicture.png

5. Take a PNG picture with the camera and extend

the 3D timeseries with this timeslice:
update ImageTimeseries as ¢

set c[sdom(c)[0].hi + 1, *:*, *:*]
assign decode($1, "png")

48

where the $1 variable again gets replaced by the
is a placeholder for an image required, such as
snaps/20211022_073847_myPicture.png .

This action is repeated several times one after
another to build several slices into the timeseries.
Due to the lack of working GPS on board, the
datacube is not a real timeseries of imagery se-
quentially taken over the same spot on Earth.
That said, for the purpose of our experiments we
can disregard the image contents as the goal was
to demonstrate queries over 3D timeseries, which
was successful.

The next set of actions contains rasql queries
executed via SpaceShell on the imagery acquired
previously, rather than being hard-coded into the NMF
application. This allows us to modify them on-the-fly
if necessary, in response to the results we get. The
rasql commands are executed in the shell via the rasql
command-line utility, therefore whenever shell
commands appear below then quotes are escaped and
further necessary rasql parameters are present which
have been omitted before. Further, the code has been
reformatted to fit the paper layout. Table 1 gives a
synopsis of averaged runtimes observed.

6. Download downscaled images extracted from the
timeseries for inspection:
for iin {1..5}; do

rasql -q
“select encode(scale(c[$i,*:*,*:*], 0.1), \"jpeg\")
from ImageTimeseries as c¢”
done
The shell loop executes the command five times
to allow averaging of results for better accuracy.
This loop is performed on all subsequent queries,
too, but left out for an easier read of the code.

7. Download a full-size image from the 2D collec-
tion (we list only the query as such and omit the
shell commands around it):
select encode(c,"jpeg")
from Images_20211027 as ¢

8. Download a random slice from the 3D timeseries
in original resolution (likewise omitting the shell
commands):
select encode(c[1,*:*,*:*],"jpeg")
from ImageTimeseries as ¢

9. Rudimentary cloud cover assessment on the slic-

es of the 3D timeseries, which is saved as a
comma-separated values (CSV) file of cloud
cover percentages for each slice:
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select encode(
marray i in [1:sdom(c)[0].hi]
values ( (float) count_cells(
c[i[0],*:**:*].red > 250
and c[i[0],*:*,*:*].green > 250
and c[i[0],*:*,*:*].blue > 250
)
/3981312f),
"csvt)
from ImageTimeseries as ¢

Sample output might look like this:
12.53,99.312,34.88

10. Average of the values of each slice, similarly
saved as a CSV file of one value per slice:

select encode(
marray i in [1:sdom(c)[0].hi]
values avg_cells(c[i[0],*:*,*:*],
"csv')

from ImageTimeseries as ¢

11. Histogram of each channel, saved as a CSV file;

an extra shell loop iterates over the RGB bands:

for band in red green blue;
do {
rasql —q
"select
encode(
marray i in [0:255]
values count_cells(
¢c[1:300,1:300].${band} = i[0] ),
\"csw\")
from Images_20211027 as ¢ \
--user XXXX --passwd XXXX
--out file --outfile histogram_${band};
} 2> histogram_${band}_time.txt;
done

12. Apply white-balance correction and contrast
stretching on each image $i: in the 3D cube:

select
encode(
(char)
(
((c[$i,*:**:*1*{1.8, 1, 1}) - 30.0) /
215.0) * 255
),
“jpeg™)
from ImageTimeseries as ¢
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13.

On a side note, this slicing is only done for the
purpose of extracting and downloading 2D imag-
es (see later); on the whole datacube this correc-
tion and stretching could be done in a single step
(note that the delivery format is changed to
NetCDF to accommodate 3D):

select

encode( (c*{1.8, 1, 1} - 30.0) / 215.0 * 255,
"netcdf" )
from ImageTimeseries as ¢

Edge detection with a Sobel kernel over a 2D
image (the Sobel kernel is indicated verbatim
while alternatively it could be conveniently
stored as an object in the database itself, which
would simplify the query):
select
avg_cells(
sqrt(
pow(
marray plin [1:100,1:100]
values
( condense +
over k1 in [-1:1,-1:1]
using ( <[-1:1,-1:1]
1,0,-1; 2,0,-2; 1,0,-1>
[k1[0], k1[1]T*c[p1[O]
+ k1[0], p1[1] + k1[1]].red

pow(
marray p2 in [1:100,1:100]
values
( condense +
over k2 in [-1:1,-1:1]
using (<[-1:1,-1:1]
1,0,-1; 2,0,-2; 1,0,-1>
[k2[0], k2[1]]*c[p2[0]
+ k2[0], p2[1] + k2[1]].red

)

)
from Images_20211027 as ¢
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14. Derive a cloud mask from each slice $i in the
timeseries (the loop again is omitted):

select
encode(
(char)

(

(c[$i,*:*,*:*].red >200 and
c[$i,*:**:*].green > 220 and
c[$i,*:*,*:*].blue > 220

) * {255¢,0c,0c}

)
“png")
from ImageTimeseries as ¢

4.2 Results

The above experiments have been conducted in-orbit
in December 2022. We discuss the extraction and
download cases (queries 6 through 14 above) in turn.

Query 6: Five timeseries slices downscaled to 10%
of the original size are shown in Figure 3. Extracting
and saving each image on the on-board disk took 1.77,
2.07,2.03, 1.73, and 1.78 seconds.

Query 9: Calculating cloud cover percentage for
each slice was performed in 28.31 seconds. The output
was delivered in CSV format as it consists of a single
number. Results delivered were: 2.361031e-05%, 0%,
9.544592e-06%, 0%, and 0%.

Query 10: The query that calculates average values
for each band of the images took 14.9 seconds to exec-
ute. The resulting CSV data are visualized as a stacked
bar chart in Figure 4 and 5. Images with higher aver-
ages are brighter, and vice versa. Scaling the band av-
erages for each image to 100%, corresponding to an
intensity of 255, reveals that the on-board camera has
a bias on the blue and green channels. Indeed, all
images show a significant bluish tint (Figure 4).

Query 11: Instead of an average we can obtain the
detail distribution in the form of channel histograms.
Executing the histogram query for the red, green, and
blue band took 11.48, 8.25, and 8.11 seconds respect-
ively. Figure 7 shows a chart of the query result.

Query 7 and 8: Based on the small image previews
inspected we decided to download four image slices in
original resolution. The times for extracting each and
saving on disk were 4.98, 1.86, 1.82, and 1.80
seconds. The first full slice is shown in Figure 6
(scaled down to paper column width).

Query 12: This query was executed in an attempt
to correct the sensor color bias and improve the
brightness and contrast of the images. It was executed
for the first four images of the timeseries in 16.17,

15.84, 28.35, and 23.27 seconds. The results are
shown on Figure 7 and 8, a significant improvement to
the original imagery as acquired by the camera as
shown in Figure 3.

Query 13: The edge detection query took 17.37
seconds to evaluate on board, which is understandable
as it is a computationally expensive operation and
only one single, slow CPU core was available (which
additionally is shared with the operating system and
potentially other processes).

Figure 3: Downscaled images for quick inspection
on ground
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Figure 4: Average value of the images bands (Y
axis) for each of the 5 images (X axis)
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Figure 5: Band averages scaled to 100% (Y axis)
for each of the 5 images (X axis)
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Figure 6: First slice in full resolution
(downscaled for printing)
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Figure 7: Channel histograms showing the count
(Y axis) of each pixel value (X axis) in one image.

Figure 8: White-balance and contrast correction
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Figure 9: Cloud detection

Query 14: In contrast to getting a cloud-cover per-
centage, this query derived a cloud mask that high-
lights the areas covered by clouds in red (Figure 9).
Cloud-cover calculation is based on a rudimentary
threshold method, and occasionally mistakes snow for
clouds as well. As the images are largely cloud-free,
the resulting cloud masks are almost completely
empty and not shown here. Execution times were 12.4,
11.2, 10.83, and 11.98 seconds for each of the first
four slices respectively.

The identical queries, as run on the satellite, were
repeated on ground on a standard desktop PC with 2x
Intel Xeon with a total of 12 virtual cores running at
1.90 GHz, 64 GB RAM, as well as a 512 GB SSD root
partition and a 6TB 7200 RPM SATA data partition.
Data downloaded have been imported in the local
database to resemble the exact same data situation. In
Table 1 below we compare performance results ob-
tained; recall that on-board a single-core ARM pro-
cessor is in use. Both computers were running rasda-
man community 9.

As can be expected, the more powerful hardware
improves performance significantly. Obviously, hav-
ing hardware on board that is only comparable to
common office standards can lead to interactive real-
time query processing on datacubes in space. We ex-
pect significant gains once hardware and software
components in space start following common IT
industry standards.

Table 1: Query runtimes (secs, averaged)

query# 6 7 8 9 10
satellite | 2.34 | 2.61 | 2.61 | 28.31 | 14.9
desktop | 0.1 | 0.32 | 0.32 | 3.45 | 1.43
query# 11 12 13 14
satellite | 9.28 | 20.90 | 17.37 | 11.6
desktop | 1.05 | 1.79 | 0.94 | 1.48
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5 CONCLUSION

We have presented the ORBIDANSe project which is
aiming to bridge the gap between two technologies
hitherto far apart from each other:

e user-oriented datacube technology easing access,
analytics, and fusion of massive spatio-temporal

Earth data;

nano-satellites which, in the spirit of 10T, can be
considered edge devices with specific charact-
eristics, such as a high data delivery rate stretching
downlink bandwidth to its limits.

Innovative contributions made are in particular:

e A datacube engine usually scaled up to run in
supercomputing centers has been scaled down to

run in an extremely limited hardware setup;

Controlling satellite image acquisition, processing,
and data download could be accomplished through
common APIs;

Query interfaces are based on adopted standards,
so no special tools are needed for gaining insight
from the satellite observations. In fact, any stand-
ards compliant client ought to be able to connect.

As we have learnt, on-board processing environ-
ments are far away from IT standards common else-
where. Lots of workarounds had to be found, and
interaction was not as seamless and user-friendly as
one is used to on Earth. We hope, therefore, to make a
case for satellite payload operators to move towards
standard components and interfaces that are easy to
use for common developers relying on industry-
established, stable solutions on board, too. NASA
SpaceCube appears a step in the right direction.

We frequently hear from space experts (and
agencies) that all pixels invariably must be brought to
ground and archived as no data should get lost. While
we do not object to this position on principle we cont-
end that today there is already a good basic supply of
complete spatial and temporal coverage; we see
satellites with on-board datacube query processing as
a complementary service adding fast and flexible ad-
hoc insight to the basic supply. We believe, therefore,
that in future datacube services will contribute an
important facet towards “any insight, any time”. Ult-
imately, such an approach has a potential for demo-
cratizing satellite data access as common tools — in
case of rasdaman, ranging from OpenLayers over
NASA WorldWind and QGIS to python and R —
become a means to talk to satellites directly, without
the need to wait for data becoming published through
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the ground segment. Obviously, proper access control
to the satellite needs to be established in parallel.

As a next step we plan operational service deploy-
ments, first in single-instance scenarios and subsequ-
ently federated. In such a federated scenario, a client
may submit some complex decision support query to a
data center; the rasdaman instance there finds out that
data are missing and spawns a sub-request to the
cubesat, and merges its locally computed results with
the cubesat response into the final result sent back to
the user. As rasdaman is already cloud-parallelized,
queries can be distributed automatically between
ground and space instances. Technically, this fog
computing scenario ties the satellites into the mashup
as edge devices; particularly interesting will be to
observe — and if necessary improve — distributed query
processing optimization in presence of highly
asymmetric processing and bandwidth capabilities
within such a federation.
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